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1 Introduction 
 

1.1 Thesis research field 
 

“ARM servers are a research subject for the industry [1] and Academia [2], [3], [4] because 

they are energy-efficient, low-power devices designed for high-throughput workloads which 

are not compute-intensive. Modern general-purpose server processors of the x86 and x64 

architectures are fast, but they sacrifice power and energy-efficiency” [5]. 

All data centers (Figure 1) use additional equipment for operating the computing 

machines: backup power supplies and communications connections, air cooling and fire 

suppression devices, security equipment [6].  

 
Figure 1 General Data Center architecture 

Since the global amount of data is only going up, the best solution for obtaining more 

efficient data processing systems is to optimize the speed and energy consumption of the 

chips that process the payloads. 

The most popular chip types used for processing data are CPU, GPU, ASIC and 

FPGA. 

 
(a) 
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(b) 

Figure 2 Digital data processing chips performance and efficiency [7] 

As we can see in in Figure 2 (a) and (b), FPGAS are a versatile choice for accelerating 

data processing while their only disadvantage is the long life cycle design. 

 
Figure 3 Power classification between CPU, FPGA, GPU and ASIC [8] 

They are already used in wide-scale datacenters and a good example would be the 

Catapult project [9] and they have the best performance/Watt compared with GPUs and CPUs 

[8], [10] and [11]. 

 

1.2 Purpose of the thesis 
 

“This thesis aims to study and implement an energy-efficient distributed computing 

heterogeneous cluster using the Hadoop framework with hardware-accelerated GZIP 

compression” [5].  

The basic building clock of the cluster are the ZedBoard development boards which 

contain dual core ARM processors and programmable logic. 

“The research will contain three main stages: 

1. In the first stage, we will compare the processing speed and the energy-efficiency of an 

ARM based cluster with an x86 cluster using standard benchmarks in the Hadoop framework.  

2. In the second stage of our research, we will develop the first open source, technology 

independent, low area GZIP FPGA core using the Verilog Hardware Description Language.  

3. In the third stage, we will integrate the compression core in the Hadoop ZedBoard cluster 

and study the speed improvement and energy-efficiency of the cluster with FPGA accelerated 

compression” [5]. 

 

1.3 Content of the thesis 
 

Chapter 2 will show all the steps for building an ARM-based heterogeneous cluster using 

ZedBoards. 
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Chapter 3 will compare the baseline performance of an Hadoop x86 cluster versus 

the ZedBoard cluster. 

In Chapter 4 we will show some basic notions about data compression. 

In Chapter 5 we will show the architecture of a hardware GZIP compliant compressor. 

In Chapter 6 we will present how to integrate the GZIP core in the Hadoop cluster 

and will measure the speed and energy-consumption improvements.  

In Chapter 7 we will present the final conclusions of this thesis.  

2. Hadoop Cluster System design 
 

Apache Hadoop is defined as “an open-source software platform for reliable, scalable,  

distributed computing. It allows distributed processing of large data sets across computer 

clusters using simple programming models” [12]. The Hadoop is composed of HDFS and 

MapReduce. 

Typically, a Hadoop cluster (Figure 4) is compresed from a NameNode which is 

coordinating several DataNodes. 

 
Figure 4 Hadoop cluster architecture [13] 

2.1 Steps for setting up the distributed computing ZedBoard cluster 

 

2.1.1 System Design 

 

The block diagram of the implemented Hadoop cluster is present in Figure 5 . 

 

 
Figure 5 Architecture of the ZedBoard cluster 
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2.1.2 Cluster configuration 

 

In this subchapter from [5] we describe all the necessary steps required to configure a 

distributed computing Hadoop ZedBoard cluster. 

3 Evaluation of a distributing computing Zedboard cluster 
 

In this chapter we will compare the baseline performance of two Hadoop clusters using the 

Terasort, TestDFSIO, MRBench and Wordcount benchmarks. One cluster is built using 

x86 machines (Figure 6) and the other one is built using ARM-based nodes. 

 
Figure 6 Hadoop components in the x86 cluster [14] 

 
Figure 7 Architecture of the x86 cluster [14] 

3.1 Wordcount 

 

“The Wordcount benchmarking application counts all the occurrences of a word from a given 

set of text files in HDFS, using MapReduce. The input for this benchmarking application is 

the Wikipedia Corpus [15], totaling 9.6 GB of text. Wordcount is an evaluation of compound 

Hadoop performance (HDFS and MapReduce), but because the computation is exceedingly 

simple, i.e. repeated string comparison, Wordcount is more IO intensive than 

computationally intensive” [14]. 

“The ARM cluster processed the corpus in 19386 seconds (5.23 hours) while the x86 

cluster completed Wordcount in 1982 seconds (0.55 hours). The x86 cluster performed 

almost 10 times faster compared to the ARM cluster. Because the data transfer speed of the 

SD card is an order of magnitude slower than a mechanical hard drive, HDFS performance 

is a bottleneck for the ARM cluster” [14]. 
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3.2 Terasort 
 

“Terasort is the most well-known Hadoop benchmark. The goal of Terasort is to sort 1TB of 

data (or any other size) as fast as possible in a distributed fashion and it it exercised both the 

HDFS and the MapReduce layers of the cluster. Since the computed algorithm is more 

complex than that of Wordcount, Terasort is focused more on computing performance and 

less on HDFS performance.” [14]. 

Figure 8 “illustrates the performance of the two clusters while executing Terasort. 

For both clusters, the time required to completely sort the input data is proportional to the 

size of the data-set. The x86 cluster is on average two times faster, for all dataset sizes.” [14]. 

 
Figure 8 Terasort results [14] 

3.3 MRBench 

 

“MRBench executes a small Hadoop job in a loop for a large number of times, evaluating 

the performance of the job management mechanisms of the cluster. The number of jobs 

launched is the key parameter of MRBench and it focuses on the MapReduce layer as its 

impact on the HDFS layer is very limited.” [14]. 

“We executed MRBench with a number of jobs ranging from 1 to 100. Figure 9 

presents the performance comparison of the two clusters on MRBench. Despite the fact that 

the JobTracker of the ARM cluster is a traditional x86 server, the under-powered ARM 

processors of the slave nodes take longer to respond to requests and overall MRBench 

performs 3 times better on x86 than on the ARM cluster” [14].  
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Figure 9 MRBench results 

3.4 TestDFSIO 

 

“Test DFSIO is a benchmark for read/write operations from and to HDFS. We performed 

several evaluations for a data volume of 2GB split equally into an increasingly larger number 

of files. The purpose of this evaluation is to identify how the data granularity is affecting the 

IO speed of the Hadoop cluster” [14]. 

 
Figure 10 Test DFSIO Read Average I/O [14] 

 
Figure 11 TestDFSIO Write Average I/O [14] 

“Figure 10 illustrates the average read IO throughput of the two clusters under 

evaluation. Except when handling large files, the read throughput is 2-3 times greater on the 

x86 cluster, which utilizes mechanical hard-disks. Write performance is illustrated in Figure 

11. For both clusters, write performance degrades when files become smaller, as the HDFS 

file management overhead becomes more time-consuming than the actual writes to the 

storage devices of the cluster nodes” [14]. 

Operation Average I/O (MB/s) 

x86 Cluster HDFS Read 23.47 

ARM Cluster HDFS Read 9.7 

x86 Cluster HDFS Write 5.95 

ARM Cluster HDFS Write 2.1 
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  Table 1 Average TestDFSIO Performance [14] 

3.5 Power dissipation 

 

“We evaluate the power dissipation of the ARM cluster in for providing a rough comparison 

of the two clusters for this important datacenter metric. We utilize an Ubiquity mPower Pro 

smart power outlet, with power measurement capability. The ARM and x86 cluster average 

power dissipation is recorded during the execution of the distributed computing benchmarks 

and presented in Table 2. We note that the power dissipated in the ARM cluster mostly by 

the name-node server, at 190 Watts. The worker ARM nodes dissipate a maximum of 20 

Watts together. By taking into account the execution times for the Wordcount, Terasort, and 

MRBench benchmarks, we have also calculated the energy consumed by each cluster to 

compute the benchmarks. The ARM cluster is more energy-efficient on all benchmarks 

except Wordcount, which is IO dependant” [14]. 

 

Computing System ARM Cluster x86 Cluster 

Power Dissipation (W) 210 1200 

Wordcount energy (MJ) 4.07 2.38 

Terasort Energy (MJ) 0.73 1.92 

MRBench Energy (MJ) 0.07 0.12 

Table 2 Power Dissipation [14] 

3.6 Conclusions of initial cluster measurements 

 

Despite the ARM cluster has slower IO it “dissipates five times less power than the x86 

cluster and is more energy-efficient on most benchmarks.” [14]. 

4 Compression techniques and compression algorithms 
 

“One of the most used features of Hadoop is data compression because the Big Data volumes 

are very large and would require many resources to be stored. Hadoop supports many popular 

compression algorithms like BZIP, GZIP, Snappy and LZO” [5].  

“Data compression is the process of converting an input data stream (the source 

stream or the original raw data) into another data stream (the output, the bitstream, or the 

compressed stream) that has a smaller size. A stream is either a file or a buffer in memory.” 

[16].  

 

4.1 Theory for data compression 

 

“Data compression is performed by changing the data representation from long 

codes to short ones, using the following rule: short codes are assigned to symbols or 
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phrases that occur frequently and long codes are assigned to the symbols that are less 

repetitive. The redundancies depend on the type of each processed payload (e.g. text, video, 

...) which is why some compression methods are best only for specific types of data. 

These are the 3 major compression categories: 

1. run length encoding (RLE) 

2. statistical methods 

3. dictionary based methods (Lempel-Ziv)” [5] 

“The compression ratio CR of a data source is defined by Equation 1.” [16] 

 
𝐶𝑅 =

𝑠𝑖𝑧𝑒 𝑜𝑓 𝑜𝑢𝑡𝑝𝑢𝑡  𝑠𝑡𝑟𝑒𝑎𝑚

𝑠𝑖𝑧𝑒 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡 𝑠𝑡𝑟𝑒𝑎𝑚
 

Equation 1 

[16] 

“The compression gain CG of a data source is defined by Equation 2.” [16] 

 
𝐶𝐺 = 100𝑙𝑜𝑔𝑒

𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑠𝑖𝑧𝑒

𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑠𝑖𝑧𝑒
 

Equation 2 

[16] 

 

 

4.1.1 Huffman Coding/Decoding 

 

“One of the most used methods for compressing data is Huffman coding which creates better 

codes than the algorithm created by Shannon-Fano [16]. The Huffman method creates the 

codes starting from the right to the left bit after it builds the list of alphabet symbols sorted 

in the descending order of their probability of occurrence. The algorithm starts from bottom 

to top by assigning bit values to the symbols with the smaller probabilities and advances to 

the more frequent symbols by creating intermediary values. The algorithm is considered 

complete when all symbols are reduced to one intermediary symbol. After this, the tree is 

traversed from the end to the beginning to generate the Huffman code for each symbol” [5]. 

 
Figure 12 Huffman code example [16] 

4.1.2 Dictionary methods 

 

“The dictionary based methods are used to encode each symbol from a string with a token 

from a dictionary. The dictionary can be either static or dynamic. The static dictionary has 

some preset values while the dynamic version is updated with symbols as the input stream is 

processed” [5]. 

“Dictionary methods are very popular between the practical compression algorithms 

like LZ77, LZMA, LZW etc.” [17] .  
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4.1.3 LZ77 (Sliding Window) 

 

 
Figure 13 LZ77 sliding window example 1 

 
Figure 14 LZ77 sliding window example 2 

 

“The core algorithm of GZIP, usually called LZ77 [18], is based on using a piece of 

the previously processed input data as the searching dictionary and to replace repeating parts 

of text with pointers to the previous text” [5].   

In Figure 13 and Figure 14 we can see the phrase “That apple is our best apple.” 

which will be to “That apple is our best@(6,18,.)” meaning that a match with the length 6 

was found 18 characters in the search buffer and the next character that does not generate a 

match is “.”. 

 

4.2 GZIP algorithm 
 

GZIP is a dictionary compression method based on LZ77 and Huffman codes substitutions. 

This method encodes a string of symbols and encodes them using a representation defined in 

a dictionary which can be either dynamic (adaptive) or static. The dynamic dictionary is 

created using strings from the previous input stream allowing the addition and deletion of 

new symbols as new data is processed. 

 “The Deflate compressed stream consists of Huffman codes for literals, lengths and 

distances. The literals and lengths are covered using one Huffman table and the distances use 

a different one. The value for literals is in the range [0:255] while the lengths are in the range 

[3:258]. The distances can have a maximum value of 32 Kbytes” [5].   
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Figure 15 GZIP compression pipeline 

“The codes for lengths and literals are coded in a large table with values from 0 to 

287. The values from 0 to 255 represent the codes for all possible 8 bit characters while the 

codes in the range [257:287] are used for representing the lengths of the matches. While the 

Huffman codes of the literals are eight or nine bits wide, the codes used for the lengths are 

composed of two parts which are the extra bits of the length concatenated with the reversed 

length Huffman code. For example, the length 19 is encoded 00|1011000. The values for 

these codes can be seen in Figure 16 and Figure 17” [5]. 

 

 
Figure 16 GZIP Huffman codes for literal/length [16] 

 
Figure 17 GZIP Huffman codes for length [16] 

 
Figure 18 GZIP Huffman codes for distance [16] 

“The codes used to represent the distances are present in Figure 18. The maximum 

value of this parameter is 32768 and can be represented on a maximum of 18 bits” [5].  

 



Hardware Offloading for Energy-Efficient Distributed Computing 

13 

 

4.3 Data Compression in Hadoop  
 

The compression algorithms used in Hadoop [19] can be seen in Figure 19. 

 
Figure 19 Supported compression formats in Hadoop [19] 

In Big Data, file compression has two major benefits:  

• It speeds up the data transfers between the nodes across the network. In the same 

time, it increases the transfer speed from disk to memory; 

• Reduces the disk space required to store the data.  

“For increasing the compression performance in both speed and compression ratio, 

Hadoop offers the possibility to use native libraries for performing this operation. As an 

example, the native GZIP library brings a compression speed-up of 10% and a decompression 

speed increase of 2x” [19]. The algorithms with native libraries are the following: 

 
Figure 20 Algorithms that support native implementations in Hadoop [19] 

5 Architecture and Design of a FPGA GZIP accelerator 
 

 

The main candidates for hardware implementation were GZIP and BZIP. We choose the 

GZIP algorithm because it has better features for hardware implementation than BZIP2. 

“The GZIP CORE project was designed and implemented using a ML605 [20] 

development board connected via PCIE in a Ubuntu 14.04 machine. The ML605 board is 

based on a Virtex-6 XC6VLX240T FPGA that has 240K logic cells and 14Kb of internal 

memory. The project also contains a software utility used to compress files in the same 

manner as the GZIP software and a Known Answer Test (KAT) for debugging during the 

design cycle. The core is connected with the Xillybus IP [21] core which can offer easy access 

over PCIE [22]” [5]. Later, the core was ported to a RTL version for Zynq-7020. 

This is the first open source, high speed, technology independent and low area GZIP 

CORE [23] in the world which can be freely used for academic research. 
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5.1 State of the art for hardware GZIP 

 

The latest state of the art hardware GZIP compressors are: CPU implementation @2.7Gbps 

(Intel) [24],  FPGA implementation (IBM) @24Gbps, ASIC implementation (AHA) 

@20Gbps [25], HDL implementation ZipAccel-C (CAST) @40Gbps [26]. 

 

5.2 LZ77 hardware encoder 

The GZIP compression software relies on the LZ77 algorithm [18]. 

The LZ77 hardware compression is based on [27] (DARPA [28] project) and [29].  

 
Figure 21 LZ77 systolic array: a)Encoder architecture; b) Processing Element (PE) [27] 

 
Figure 22 Simplified architecture of the LZ77 encoder [25] 

 “The output of the LZ77 encoder is a 3 parameters pointer 𝐶 = (𝐶𝑙, 𝐶𝑝, 𝐶𝑛). 𝐶𝑙 

represents the length of the string match, 𝐶𝑝 represents the location where that match was 

found and 𝐶𝑛 represents the succeeding symbol in the stream” [5].  

 “The position of the longest match is calculated using a priority encoder. Because of 

the big combinational loops, several optimization techniques are implemented to enable the 

best results for synthesis” [5].  

 

5.3 Architecture of the compression core 
 

A general architecture for a GZIP core is present in Figure 23.  
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Figure 23 GZIP core general architecture [25] 

Our architecture from Figure 24 supports the Stored and Fixed Huffman modes as 

they are better suited for a low area and high speed hardware implementation.  

 
Figure 24 Detailed architecture of the designed GZIP core: a) Zynq7020 version b) Virtex6 version  

The main differences between the 2 architectures from Figure 24 are described in 

[5] in chapter 5.3. 

The architecture presented in Figure 24 is technology independent, modular and 

scalable and does not utilize Xilinx or Altera design blocks.  

 

5.3.1 Xillybus 

 

This is a hardware and software IP stack designed for transferring data between the host 

memory and a FPGA using DMA. This module enables easy integration with host software 

in Linux and also provides an embedded Linux version called Xillinux for the Zynq family 

[21].  

 

5.3.2 FIFOS 
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The input FIFO has a size of 32x256 bits so it can buffer 1024 bytes from the DMA engine. 

The output FIFO has a size of 65x128 bits as the output words are 64 bits wide and another 

extra bit is used to flag that all bytes present in the payload are processed.  

 

5.3.3 MEM_ARRAY 

 

This block is an 8x32 RAM memory which stores the status and control registers for the 

GZIP core.  

 

5.3.4 CRC32 

 

This module implements the CRC-32 polynomial described in ISO 3309 which calculates 

the CRC of a 8 bit character 𝐶 by doing the operation 𝑃(𝑥) 𝑚𝑜𝑑 𝐶 using a precomputed 

Look Up Table like in Figure 25.  

 
Figure 25 CRC32 design with LUT 

5.3.5 LZ77 Encoder 

 

This block returns the value of the match pointers calculated between the symbols already 

inserted in the dictionary and the ones present in the look-ahead buffer.  

 
Figure 26 Initial combinational logic tree in the LZ77 encoder [30]  
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Figure 27 LZ77 first improvement for synthesis 

 
Figure 28 LZ77 second improvement for synthesis [30] 

Because this module represents the “critical path” of the design, we had to split the 

priority encoder into smaller ones and add pipelining stages between them in order to obtain 

better synthesis results. 

 

5.3.6 LZ77 Filter  

 

The purpose of this module is to align the output of the LZ77 encoder in such a manner that 

they are compliant with the Deflate format described in RFC 1951.  

 

5.3.7 SDHT – Static Distance Huffman Tree 

 

This module is used to compute the distance values detected by the LZ77 encoder.  

 
Figure 29 SDHT architecture 

5.3.8 SLITERAL – Static Literal Huffman Tree 

 

This module is used to transform from ASCII values, which can be from 0 to 255, to Huffman 

encoded values.  
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5.3.9 SLENGHT – Static Literal Huffman Tree 

 

This module is used to encode with Huffman codes the value of the length pointer.  

 

5.3.10  WORD MERGE 

 

This role of the WORD MERGE module is to concatenate input lengths between 1 and 64 

bits and to pack them into 64 bits chunks.  

 

5.3.11  GZIP TOP 

 

This module is the top level module which comprises all the modules mentioned above with 

the glue logic necessary to interconnect them. The most important part of this module is the 

state machine (Figure 30.) which is used to read the data coming from the software utilitary 

through Xillybus IP.  

 

 
Figure 30 GZIP CORE state machine [30] 

 

5.4 Operation mode and software design 
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5.4.1 GZIP core register space 

 

The GZIP core has several registers RST_REG, BTYPE_REG, DEBUG_REG1…16, 

DEV_ID. 

Address Name Field Name  

 Bit position 7 6 5 4 3 2 1 0 

0 RST_REG x x x x x x x RST_N R/W 

1 BTYPE_REG x x x x x SEL_ENDNS R/W BTYPE[1:0] R/W 

2 DEBUG_REG1 x x x x x 

GZIP_DONE 

RO 

BTYPE_ERR 

RO 

BSIZE_ERR 

RO 

3 DEBUG_REG2 ISIZE[31:24] RO 

4 DEBUG_REG3 ISIZE[23:16] RO 

5 DEBUG_REG4 ISIZE[15: 8] RO 

6 DEBUG_REG5 ISIZE[7 : 0] RO 

7 DEBUG_REG6 CRC32[31:24] RO 

8 DEBUG_REG7 CRC32[23:16] RO 

9 DEBUG_REG8 CRC32[15: 8] RO 

10 DEBUG_REG9 CRC32[7 : 0] RO 

11 DEBUG_REG10 BLOCK_SIZE[23:16] RO 

12 DEBUG_REG11 BLOCK_SIZE[15: 8] RO 

13 DEBUG_REG12 BLOCK_SIZE[ 7: 0] RO 

14 DEBUG_REG13 OUTPUT_SIZE[ 31:24] RO 

15 DEBUG_REG14 OUTPUT_SIZE[ 23:16] RO 

16 DEBUG_REG15 OUTPUT_SIZE[15: 7] RO 

17 DEBUG_REG16 OUTPUT_SIZE[ 7: 0] RO 

18 DEV_ID DEV_ID[7:0] RO 

Legend: x = unimplemented 

R/W = read/write 

RO = read only 

 

Table 3 GZIP core register address space 

 

5.4.2 GZIP core compression software 

 

The core is operated by using a software routine written in C which packs the basic data 

transfer functions provided by the Xillybus IP Linux driver. The software splits the input file 
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into smaller blocks, sends the data to the FPGA using the write pipe and then the output is 

expected on the read pipe. The software also writes the GZIP file header, thus the archive 

can be decompressed by any GZIP compliant software.  

A command word as in Figure 31 (a) is used to control the GZIP core state machine. 

 

Byte 3 2 1 0 

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 

Subfield x x x x x x x BF x x x x x x x x BLOCK_LEN[15:0] 

(a) 

 
(b) 

Figure 31 Data stream from CPU to FPGAs 

 
(a) 

 
(b) 

Figure 32 Structures of the compressed streams 

In Figure 32 (a) and (b) we can see the structure of the compressed data streams 

created by the software and GZIP core in the STORED and FIXED_HUFFMAN modes. 

 

5.5 Experimental results 
 

5.5.1 GZIP core synthesis results on Virtex6 

 

The Deflate core was synthesized in standalone mode and the synthesis area consumption for 

both chips is present in Table 4. 
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Table 4 Deflate core synthesis on Xilinx and Altera FPGAs [25] 

 
Table 5 GZIP core synthesys on Xilinx Virtex6 [25] 

Table 5 contains the synthesis results for the GZIP core from Figure 24 (a) on the 

Virtex6 FPGA. The extra logic slightly affects the performance of the core meaning that the 

pipelining successfully limits the delays on the critical paths. 

 

5.5.2 GZIP core performance measurements on Virtex6 

 

The selected dictionary size for the GZIP core is 512 and the look-ahead buffer has a size of 

66. The GZIP core clock frequency is 100MHz, synthesized along the Xillybus IP, and 

programmed in the ML605 board.  

 

 
Table 6 GZIP profiling using the Calgary corpus on Virtex6 

5.5.3 Comparison with the state of the art compressors 

 

“While the compressors from Section 5.1 are faster than our core, we have to take in 

consideration that they are industrial IPs developed by large companies and the performance 

is measured using very expensive FPGA that have superior performance. Our GZIP core has 

a small area and can achieve good performance on low-cost and energy-efficient FPGAs 

also” [5]. 
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6 Evaluation of a Hadoop ZedBoard cluster with FPGA 

GZIP acceleration 
 

The GZIP core was integrated in a Hadoop heterogeneous cluster based on ZedBoard 

development platforms. The difference between classical data processing using the CPU and 

high-speed processing using specialized computing units is shown in Figure 33 (a) and (b). 

The specialized processing element usually has a lower clock speed and a higher throughput 

due to the optimized hardware architecture. 

 

 
(a) 

 
(b) 

Figure 33 Hardware coprocessor usage diagram 

ARM servers are a research field that explores the usage of low-power CPUs 

combined with hardware accelerators [31], [32]. 

6.1 State of the art for Heterogeneous ZedBoard clusters 

 

“Heterogenous Hadoop cluster for low power processing have been previously studied in 

[33] to accelerate FIR filter processing and in [34] to accelerate graph-oriented applications. 

In [33] the FPGA acceleration brings a 20% speed improvement compared with the ARM 

processor working independently while in [34] the FPGA acceleration makes the cluster 1.2x 

times faster for graph processing operations” [5]. 

 

6.2 Xillinux prerequisites for a ZedBoard Datanode 

 

The steps for setting up each slave node are described in [5]. A very important step is to 

resize the SD card as in Figure 34. 

 
Figure 34 SD card after resize 
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6.3 GZIP core synthesis results on Zynq7020 

 

The maxim clock speed the core can synthesize in the Zynq7020 FPGA fabric is 184MHz 

for a dictionary 512 bytes deep and maximum value for the look-ahead buffer of 258 

characters.  
FPGA 

Resource 

GZIP 

core 

GZIP core + 

Xillybus IP 

LUT 9% 21% 

LUTRAM 2% 6% 

FLIPFLOPS 4% 12% 

BRAM 3% 1% 

Table 7 GZIP core synthesis on Zynq7020 

6.4 GZIP core performance measurements on Zynq7020 

 

For profiling the performance of the GZIP core, we used several popular corpuses for 

profiling data compression performance: Silesia, Calgary, Canterbury, Lukas 3D, Protein. 
Corpus 

name 
Silesia Calgary Canterbury Lukas 3D Protein 

Compession 

processor 

ARM FPGA ARM FPGA ARM FPGA ARM FPGA ARM FPGA 

Average 

speed 

(MBps) 

0.59 4.68 0.37 2.2 0.28 2.15 0.74 3.47 0.8 3.9 

CR 3.7 1.78 3.3 2.14 3.6 1.75 1.88 1.36 1.72 1.04 

Max speed 

(MBps) 
1.18 4.87 0.56 4.4 0.38 4.1 0.85 4.21 0.85 4.79 

Max CR 10.48 4.24 9.09 6.61 9.09 6.61 1.95 1.39 1.74 1.05 

Table 8 GZIP core profiling on Zynq7020 [35] 

Table 8 shows the compression speed and compression ratio using some of the best-

known corpuses used to profile data compression efficiency. We can see that the compression 

ratio is smaller up to 2.47x times than that of the GZIP software while the latter has a 

dictionary 64 times larger. The compression speed is up to 5.6x times higher than the speed 

of the ARM CPU.  

The power and energy consumption of the GZIP core was measured using a 

MCP39F501 board from Microchip and created the setup from Figure 35. 
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Figure 35 ZedBoard power measurement setup [35] 

The average energy and power consumption of the ZedBoard when  

performing hardware and software compression can be seen in Table 9.  

 

File 

Size [MB] 

ARM + FPGA ARM Energy ARM / 

Energy (ARM + FPGA) 
Power 

[W] 

Time 

[s] 

Energy 

[J] 

Power 

[W] 

Time 

[s] 

Energy 

[J] 

100 MB 5.25 12.5 65.6 5.05 69.30 349.9 
5.33 

160 MB 5.25 25 131.25 5.05 148.20 748.4 
5.69 

450MB 5.26 62 326.1 5.05 290 1464.5 
4.49 

950 MB 5.28 143 755 5.06 602 3046 
4.03 

Table 10 GZIP core power and energy profiling [35] 

6.5 FPGA GZIP core integration in Hadoop 

In Figure 36 (a) and (b) we have the diagram of the ZedBoard cluster. 

 
Figure 36 Hadoop ZedBoard cluster architecture [35] 

The native GZIP compression libraries from Hadoop were replaced with a custom 

library that used our GZIP core for compressing data. 
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Figure 37 GZIP compression data flow in Hadoop 

6.6 Cluster benchmarking 

 

For profiling the performance of the ZedBoard cluster we the popular Hadoop benchmarks 

Wordcount and Terasort. 

 

6.6.1 Wordcount results 

 

We cans see in Figure 38 the data compression process add a 12% processing overhead to 

the total duration of the benchmark. Table 11 shows an energy consumption improvement of 

44% when the hardware compression core is used.   

 
Figure 38 Wordcount benchmark results [35] 

Data 

Size 

[GB] 

No 

GZIP 

[J] 

Soft 

GZIP 

(normalised) 

GZIP  

core 

(normalised) 

Improvement 

between  

FPGA 

and soft 

GZIP % 

0.5 137992 1.077 1.04 47.73 

1 278990 1.103 1.063 38.59 

2 550334 1.146 1.074 49.25 

3 845413 1.088 1.051 41.61 

Table 11 Cluster energy consumption for Wordcount [35] 

6.6.2 Terasort results  
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Figure 39 Terasort benchmark results [35] 

“In  Figure 39 we can see that the compression adds and computation overhead of 

13% in the total duration of the Terasort benchmark while in Table 12 it is shown that the 

average energy consumption improvement has an average of 42%” [5].  

 

Data 

Size 

(GB) 

No 

GZIP 

(J) 

Soft 

GZIP 

(norm) 

GZIP  

core 

(norm) 

Improvement 

between  

FPGA 

and soft 

GZIP % 

1 22276 1.106 1.053 49.73 

2 41636 1.163 1.163 25.50 

4 84024 1.192 1.192 28.08 

8 165705 1.191 1.191 54.07 

16 334638 1.147 1.147 53.60 

Table 12 Cluster energy consumption for Terasort [35] 

6.6.3 Comparison with the state of the art Heterogeneous ZedBoard clusters 

 

“The other ZedBoard clusters are accelerating other compute-intensive operations using the 

FPGA fabric, so our experiments are original and can be used as a baseline for later and more 

efficient studies about data compression in Big Data heterogeneous clusters.” [5]. 

7 Conclusions 

7.1 Experimental results interpretation 

 

All 3 initial objective of the thesis were reached during the research stages: 

1. Build an ARM based Hadoop cluster and measure the speed and energy efficiency of 

the cluster using standard Hadoop benchmarks. 

2. Implement a GZIP FPGA accelerator. 

3. Accelerate data compression in a Hadoop heterogeneous cluster. 

The processing speed of the Hadoop cluster is strongly dependent on the data storage 

speed, network fabric and processing resources, as CPU and RAM. 

“The values from both benchmarks done on the Hadoop ZedBoard cluster suggest 

that the FPGA hardware compression brings an energy improvement up to 54% during the 

compression stages” [5].  

  “Our core can reach a maximum bandwidth of 1.84Gbps on a StratixV device and 

reaches the maximum 100MB speed using large files on a Linux machine. The core can be 

18x faster than an Intel i7 CPU running at 28x higher clock frequency. The core is also up to 

5.6x times faster than an ARM CPU running at a frequency 6.7 times higher” [5]. 
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“From the energy saving perspective, the GZIP core is up to 5.6x times more energy-

efficient than the ARM CPU processing the same payload. If the compression is applied in 

the Hadoop Map and Reduce stages, the core is almost 2 times more energy-efficient than 

the ARM processor in the same stages” [5]. 

7.2 Original contributions of this thesis 
“The key contributions of this thesis are: 

1. The first open-source, technology independent, high-speed GZIP FPGA compression 

core and LZ77 engine. The core is publicly available at [23]. The repository contains 

the Verilog sources, the module level tests, the system level tests and the compression 

software used for operating the core via Xillybus. The used programming and scripting 

languages are: Verilog, C, Bash and Perl. 

2. An optimized architecture for a high speed and low area FPGA compression core. The 

core is up to 18x times faster than an Intel i7 CPU clocked at a frequency 28x times 

bigger. Compared to the ARM CPU, the core is up to 8x times faster while the ARM 

core frequency is 6.7x times higher. The core uses less than 10% of the resources of a 

Zynq-7020 FPGA. 

3. The first ZedBoard Hadoop heterogeneous cluster with GZIP FPGA acceleration. The 

speed and energy consumption improvements are measured. The cluster is up to 2x 

times more energy efficient when performing compression using the GZIP core. 

4. We have proven that heterogeneous ARM FPGA devices could be a solution for future 

energy-efficient data processing machines” [5]. 

 

7.3 List of published articles 
 

 

“The results obtained during the research stages were published in four articles: 

1. "EVALUATION OF A LOW-POWER HADOOP CLUSTER" U.P.B. Scientific 

Bulletin, p. 12, 2017 [14]. 

2. "FPGA systolic array GZIP compressor," in International Conference on Electronics, 

Computers and Artificial Intelligence, Targoviste, Romania, 2017, (ISI Web of Science 

indexed) [25]. 

3. "Hadoop ZedBoard cluster with GZIP compression FPGA acceleration," in 11th 

International Conference on Electronics, Computers and Artificial Intelligence (ECAI), 

Targoviste, Romania, 2019, (ISI Web of Science indexed) [35].  

4. "Optimizing GZIP compression accelerator for Zynq FPGAs," in International 

Semiconductor Conference (CAS), Sinaia, Romania, 2019 [30].” [5] 

7.4 Future development 
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It would be interesting to add clock constraints for better synthesis results and to implement 

the parallel GZIP compression algorithm described in the PIGZ algorithm [36].  
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